Roger Ignazio
Infrastructure Automation Engineer @ Mesosphere
@rogerignazio
$(whoami)
MESOS IN ACTION

mesosinaction.com
Code: ctwpuppet
AGENDA

● Getting started
● Deploying a Mesos cluster
● Building a Docker image
● Creating a Chronos job
● Demo
● Provisioning infrastructure – bare-metal and cloud
● Q & A
GETTING STARTED

ABOUT MESOS, DOCKER, AND CHRONOS

Mesos

- Represent many machines (thousands) as a single entity
- Advertise resources directly to applications

Docker

- Easily package and deploy apps (with dependencies)
- Analogous to VMs, but minus the overhead*

Chronos

- Distributed, highly available Cron for Mesos
- Run scheduled tasks in cgroups, Docker containers
ABOUT PUPPET

- Declare *desired* state for your infrastructure
- Wide range of OS support
- Idempotent
- Extensible (via custom facts, types, providers)
- Open source – Apache License, version 2
Puppet’s Role

Getting Started

Physical Infrastructure
- (Cisco, Dell, HP, etc)

Virtual Infrastructure and IaaS
- (vSphere, OpenStack, AWS, Azure, etc)

Operating System
- (RHEL, Ubuntu, Windows, etc)

Mesos Apps (“Frameworks”)
- (Chronos, Marathon, etc)

Mesos

Virtual Infrastructure and IaaS
- (vSphere, OpenStack, AWS, Azure, etc)

Physical Infrastructure
- (Cisco, Dell, HP, etc)
If Mesos is the abstraction layer for your applications, Puppet is the abstraction layer for infrastructure management
If Mesos is the abstraction layer for your applications, Puppet is the abstraction layer for infrastructure management.

But it can also be more ...
Custom types and providers can interact with external services (AWS, Chronos, ...)

- Puppet Master
- Chronos Node
- AWS Coordinator Node
- AWS API
- Chronos API

GETTING STARTED
PUPPET’S ROLE
DEPLOYING MESOS, DOCKER, AND CHRONOS
DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYMENT OVERVIEW

- Install/configure Mesos, ZooKeeper, Docker
- Stage a Docker image on the Mesos agents
- Install and configure Chronos
- Create a Chronos job (that runs in a Docker container)
DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYMENT OVERVIEW
DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYMENT OVERVIEW

- Puppet’s roles/profiles pattern
- Using the following Puppet modules
 - deric-zookeeper
 - deric-mesos
 - garethr-docker
 - puppetlabs-chronos

All of these modules are open source and available via the Puppet Forge: https://forge.puppetlabs.com
class role::mesos::master {
 include profile::base
 include profile::chronos
 include profile::mesos::master
 include profile::zookeeper
}

DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYING MESOS (MASTER)
class profile::mesos::master {
 include profile::mesos::common

 class { '::mesos::master': # From deric-mesos
 listen_address => $::ipaddress_eth0,
 work_dir => '/var/lib/mesos',
 options => {
 log_dir => '/var/log/mesos',
 quorum => '1',
 },
 }
}
class profile::zookeeper {
 include java # Include defaults from puppetlabs-java

 class { '::zookeeper': # From deric-zookeeper
 client_ip => $::ipaddress_eth0,
 id => '1',
 repo => 'cloudera',
 require => Class['java'],
 }
}
class role::mesos::agent {
 include profile::base
 include profile::docker
 include profile::mesos::agent
}
DEPLOYING MESOS (AGENT)

class profile::mesos::agent {
 include profile::mesos::common

 class { '::mesos::slave': # From deric-mesos
 listen_address => $::ipaddress_eth0,
 work_dir => '/var/lib/mesos',
 options => {
 log_dir => '/var/log/mesos',
 },
 }
}
class profile::mesos::common {
 class { '::mesos': # From deric-mesos
 repo => 'mesosphere',
 zookeeper => 'zk://192.168.248.10:2181/mesos',
 }
}
include ::docker # Include defaults from garethr-docker

class { '::mesos::slave': # Let’s reconfigure the Mesos agent
 ...
 options => {
 containerizers => 'docker,mesos',
 isolation => 'cgroups/cpu,cgroups/mem',
 executor_registration_timeout => '5mins',
 },
}
DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYING CHRONOS

```ruby
class profile::chronos {
    include ::chronos  # Include defaults from puppetlabs-chronos
}
```
BUILDING DOCKER IMAGES WITH PUPPET
Synopsis:
- Build a Docker image declaratively

Two approaches:
- `puppet agent` – pre-shared key to use existing Puppet infra
- `puppet apply` – directly apply manifests during build
Synopsis:

- Build a Docker image declaratively

Two approaches:

- `puppet agent` – pre-shared key to use existing Puppet infra
- `puppet apply` – directly apply manifests during build
FROM debian:wheezy
MAINTAINER Roger Ignazio <roger@mesosphere.com>
WORKDIR /tmp

RUN curl -sOL https://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
RUN dpkg -i puppetlabs-release-wheezy.deb
RUN apt-get update
RUN apt-get -y install puppet
COPY * ./
RUN puppet apply example.pp
BUILDING DOCKER IMAGES WITH PUPPET

GETTING STARTED WITH PUPPET AND DOCKER

```puppet
package { ['ruby', 'ruby-dev', 'build-essential']: ensure => installed, }

package { 'httparty': ensure => installed, provider => gem, }

file { '/usr/bin/query_mesos':
    ensure => file,
    mode => '0755',
    source => '/tmp/query_mesos.rb',
}
```
Step 10 : RUN puppet apply example.pp

--- Running in 12eda5e24ff8

Notice: Compiled catalog for 90c88c41cdaa.bad in environment production in 0.16 seconds
Notice: Package[build-essential]/ensure: ensure changed 'purged' to 'present'
Notice: File[/usr/bin/query_mesos]/ensure: defined content as '{md5}
e44268ac8e31f75f1aeeee961d0ebe36b'
Notice: Package[ruby-dev]/ensure: ensure changed 'purged' to 'present'
Notice: Package[httparty]/ensure: created
Notice: Finished catalog run in 33.22 seconds

--- 1a8fefd724ee
Removing intermediate container 12eda5e24ff8

Successfully built 1a8fefd724ee
Using the garethr-docker Puppet module

```puppet
docker::image {  'rogerignazio/basic-puppet-example':
    image_tag => 'latest',
}
```

Equivalent to

```
$ docker pull rogerignazio/basic-puppet-example:latest
```
MANAGING CHRONOS JOBS WITH PUPPET
Bundled with a module
Found at `lib/puppet/type` and `lib/puppet/provider`
Model the API of an external service – as Puppet code
A CUSTOM TYPE AND PROVIDER

MANAGING CHRONOS JOBS WITH PUPPET

```ruby
chronos_job { 'fetch_mesos_master_metrics':
  command => 'query_mesos 192.168.248.10',
  job_schedule => 'R/2015-10-09T00:00:00.000Z/PT1M',
  container => {
    type => 'DOCKER',
    image => 'rogerignazio/basic-puppet-example',
  },
  cpus => 0.5,
  mem => 256,
  owner => 'roger@mesosphere.com',
}
```
DEMO
PROVISIONING INFRASTRUCTURE
● Declare AWS infrastructure as Puppet resources
● Custom types and providers hit the AWS API
 ● Ensures resources are in desired state
ec2_instance { 'mesos-slave-NN':
 ensure => present,
 region => 'us-west-2', # US West (Oregon)
 image_id => 'ami-4dbf9e7d', # AWS RHEL 7.1 image
 instance_type => 'c4.xlarge', # 4 CPUs, 7.5 GB mem
 security_groups => ['mesos-aws-secgrp'],
}
Some of the available resource types:

- ec2_instance
- ec2_securitygroup
- ec2_vpc
- elb_loadbalancer
- route53_a_record

A more complete example: http://bit.ly/puppet-aws-example
BARE-METAL PROVISIONING WITH RAZOR

- Auto-discover inventory
- Policy-based provisioning
- Pluggable “brokers”
- Razor is open source – Apache License, v2
BARE-METAL PROVISIONING WITH RAZOR

PROVISIONING INFRASTRUCTURE

PXE Boot
Razor Microkernel

Ubuntu ISO
RHEL ISO

Razor Server

Policy
(Facts, IPMI, LLDP)

Razor Client
(Admin)

Puppet
Master

role::mesos::master
role::mesos::agent
...

...
BARE-METAL PROVISIONING WITH RAZOR

For more information, check out http://bit.ly/razor-intro
puppetconf_talk { 'managing_mesos':
 ensure => presented,
 speaker => 'Roger Ignazio',
 email => 'roger@mesosphere.com',
 twitter => '@rogerignazio',
}